# Auditorium Exercise 02 <br> Differential Equations II for Students of Engineering Sciences Summer Semester 2024 

Jule Helena Schütt<br>Universität Hamburg

April 262023

## Announcements

Exercise class Monday, May 6th (Very likely) no Exercise class here, may be online or attend German ones (more info in StudIP)

Lectures
There will be no (English) recordings if no one attends the lectures

## Overview

Classification of partial differential equations

Linearity of partial differential equations

Superposition

Linear substitution

## Classification of partial differential equations

1. Scalar PDEs (compare lecture p.4-6)

$$
F\left(x, u(x), D u(x), D^{2} u(x), \ldots, D^{m} u(x)\right)=0 \quad \forall x \in \Omega \subset \mathbb{R}^{n}
$$

$m$ : order (=highest derivative order)
$n \geq 2$ : dimension (space where $x$ lives)
2. Linear PDEs: Affine linear in $u, D u, D^{2} u, \ldots, D^{m} u$ with coefficients depending on $x$.
3. Semilinear PDEs: Affine linear (only) in $D^{m} u$ with coefficients depending on $x$.
4. Quasilinear PDEs: Affine linear (only) in $D^{m} u$ ab with coefficients depending on $x$ and $u, D u, \ldots, D^{m-1} u$.
5. Fully non linear PDEs: Not quasilinear.

## Examples

1. $a u_{x}+b u_{y}=g(x, y) \quad g$ cont., $a, b \in \mathbb{R}, a \cdot b \neq 0$.
order:
inhomogenity:
2. $x^{2} u_{t}+t u_{x}=0$
order:
inhomogenity:
coefficients:
classification:
coefficients:
classification:
3. Telegrapher's equations: $u_{t t}-u_{x x}+2 u_{t}+u=0$
order:
inhomogenity:
4. $u_{t}+\left(u^{4}\right)_{x}=0$
order:
inhomogenity:
5. $\left(u_{x x}\right)^{2}+u_{x y}+2 u_{y}=0$
order:
inhomogenity:
coefficients:
classification:
coefficients:
classification:
coefficients:
classification:

## Examples

1. $a u_{x}+b u_{y}=g(x, y) \quad g$ cont., $a, b \in \mathbb{R}, a \cdot b \neq 0$.
order: 1
inhomogenity: $g(x, y)$
coefficients: a,b classification: linear
2. $x^{2} u_{t}+t u_{x}=0$
order: 1
inhomogenity: 0
coefficients: $x^{2}, t$ classification: linear
3. Telegrapher's equations: $u_{t t}-u_{x x}+2 u_{t}+u=0$
order: 2
inhomogenity: 0
4. $u_{t}+\left(u^{4}\right)_{x}=0$
order: 1
inhomogenity: 0
5. $\left(u_{x x}\right)^{2}+u_{x y}+2 u_{y}=0$
order: 2
inhomogenity: 0
coefficients: 1,-1
classification: linear
coefficients: $4 u^{3}$
classification: quasilinear

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
u_{t}+\left(u^{4}\right)_{x}=0
$$

are also solutions. If yes, check whether sums of solutions are also solutions.

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
u_{t}+\left(u^{4}\right)_{x}=0
$$

are also solutions. If yes, check whether sums of solutions are also solutions.

- Assume $\tilde{u}_{t}+\left(\tilde{u}^{4}\right)_{x}=0$

Thus, $\tilde{u}_{t}+4 \tilde{u}^{3} \cdot \tilde{u}_{x}=0 \xlongequal{\Longrightarrow}$


For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
\hat{u}_{t}+\left(\hat{u}^{4}\right)_{x}=\underbrace{(k \cdot \tilde{u})_{t}}_{k \underbrace{\tilde{u}_{+}}_{+}}+\underbrace{k^{4} 4(k \tilde{u})^{3}(k \tilde{u})_{x}}_{-\tilde{u}^{3} \tilde{u}_{x}}=k(-4) \tilde{u}^{3} \tilde{u}_{x}+\left.4\right|_{4^{4} \tilde{u}^{3} \tilde{u}_{x}}
$$

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
u_{t}+\left(u^{4}\right)_{x}=0
$$

are also solutions. If yes, check whether sums of solutions are also solutions.

- Assume $\tilde{u}_{t}+\left(\tilde{u}^{4}\right)_{x}=0$

Thus, $\tilde{u}_{t}+4 \tilde{u}^{3} \cdot \tilde{u}_{x}=0 \Longrightarrow \tilde{u}_{t}=-4(\tilde{u})^{3} \tilde{u}_{x}$
For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
\hat{u}_{t}+\left(\hat{u}^{4}\right)_{x}=(k \cdot \tilde{u})_{t}+4(k \tilde{u})^{3}(k \tilde{u})_{x}=\underbrace{\left(k^{4}-k\right) \tilde{u}^{3} \tilde{u}_{x}}_{\text {Not necessarily }=0_{0}}
$$

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=
$$

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=0
$$

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=0
$$

- Let $u^{*}$ and $\tilde{u}$ solutions of the considered PDE, then

$$
x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0 \quad \text { and } \quad x^{2} u_{t}^{*}+t u_{x}^{*}=0
$$

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=0
$$

- Let $u^{*}$ and $\tilde{u}$ solutions of the considered PDE, then

$$
x^{2} \tilde{u}_{t}+t \tilde{u}_{x} \stackrel{*}{=} 0 \quad \text { and } \quad x^{2} u_{t}^{*}+t u_{x}^{*} \stackrel{*}{=} 0
$$

For $\hat{u}:=u^{*}+\tilde{u}$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2} \overbrace{\left.u^{*}+\tilde{u}\right)_{t}}+t \overbrace{\left(u^{*}+\tilde{u}\right)_{x}}=\underbrace{x^{2} u_{x}^{n}++u_{x}^{n}}_{=0}+\underbrace{2 \tilde{u}_{x}+\hat{u}_{x}=0}_{=0}
$$

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=0
$$

- Let $u^{*}$ and $\tilde{u}$ solutions of the considered PDE, then

$$
x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0 \quad \text { and } \quad x^{2} u_{t}^{*}+t u_{x}^{*}=0 .
$$

For $\hat{u}:=u^{*}+\tilde{u}$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}\left(u^{*}+\tilde{u}\right)_{t}+t\left(u^{*}+\tilde{u}\right)_{x}=0
$$

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=0
$$

- Let $u^{*}$ and $\tilde{u}$ solutions of the considered PDE, then

$$
x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0 \quad \text { and } \quad x^{2} u_{t}^{*}+t u_{x}^{*}=0 .
$$

For $\hat{u}:=u^{*}+\tilde{u}$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}\left(u^{*}+\tilde{u}\right)_{t}+t\left(u^{*}+\tilde{u}\right)_{x}=0
$$

What applies to the sum of 3 solutions?

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=0
$$

- Let $u^{*}$ and $\tilde{u}$ solutions of the considered PDE, then

$$
x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0 \quad \text { and } \quad x^{2} u_{t}^{*}+t u_{x}^{*}=0
$$

For $\hat{u}:=u^{*}+\tilde{u}$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}\left(u^{*}+\tilde{u}\right)_{t}+t\left(u^{*}+\tilde{u}\right)_{x}=0
$$

What applies to the sum of 3 solutions? Is also a solution What applies for any number of linear combinations of solutions?

## Linearity of PDEs: Examples

Check whether multiples of solutions of the PDE

$$
x^{2} u_{t}+t u_{x}=0
$$

are solutions. If yes, check whether sums of solutions are also solutions.

- Assume $x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0$

For $\hat{u}:=k \cdot \tilde{u}$ with $k \in \mathbb{R}, k \neq 0$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}(k \tilde{u})_{t}+t(k \tilde{u})_{x}=0
$$



- Let $u^{*}$ and $\tilde{u}$ solutions of the considered PDE, then

$$
x^{2} \tilde{u}_{t}+t \tilde{u}_{x}=0 \quad \text { and } \quad x^{2} u_{t}^{*}+t u_{x}^{*}=0 .
$$

For $\hat{u}:=u^{*}+\tilde{u}$ holds

$$
x^{2} \hat{u}_{t}+t \hat{u}_{x}=x^{2}\left(u^{*}+\tilde{u}\right)_{t}+t\left(u^{*}+\tilde{u}\right)_{x}=0
$$

What applies to the sum of 3 solutions? Is also a solution What applies for any number of linear combinations of solutions? Is also a solution

## Superposition

Let $f$ be a continuously differentiable function. Show that

$$
u(t, x)=f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)
$$

is a solution of $x^{2} u_{t}+t u_{x}=0$.

## Superposition

Let $f$ be a continuously differentiable function. Show that

$$
u(t, x)=f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)
$$

is a solution of $x^{2} u_{t}+t u_{x}=0$.

$$
\begin{aligned}
& u_{t}(t, x)=\left(f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)\right)_{t}= \\
& u_{x}(t, x)=\left(f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)\right)_{x}=
\end{aligned}
$$

## Superposition

Let $f$ be a continuously differentiable function. Show that

$$
u(t, x)=f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)
$$

is a solution of $x^{2} u_{t}+t u_{x}=0$.

$$
\begin{aligned}
& u_{t}(t, x)=\left(f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)\right)_{t} \stackrel{\downarrow}{=}(-t) f^{\prime}\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right), \\
& u_{x}(t, x)=\left(f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)\right)_{x}^{\text {choin rule! }} \stackrel{\downarrow}{=} x^{2} f^{\prime}\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right) .
\end{aligned}
$$

Thus, $x^{2} u_{t}+t u_{x}=0$.

$$
\begin{aligned}
& =x^{2}(-t) f^{\prime}\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)+t x^{2} f^{\prime}\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right) \\
& =(-t+t) x^{2} f^{\prime}\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)=0
\end{aligned}
$$

## Superposition

Show that $\tilde{u}(t, x)=x^{6}-3 t^{2} x^{3}+\frac{9}{4} t^{4}$ is a solution of the IVP

$$
\left\{\begin{array}{rll}
x^{2} u_{t}+t u_{x}=0 & \text { for } & (t, x) \in(0, \infty) \times \mathbb{R} \\
u(0, x)=x^{6} & \text { for } & t=0, x \in \mathbb{R}
\end{array}\right.
$$

Show that $\hat{u}(t, x)=\cos \left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)$ is a solution of the IVP

$$
\left\{\begin{array}{rll}
x^{2} u_{t}+t u_{x}=0 & \text { for } & (t, x) \in(0, \infty) \times \mathbb{R}, \\
u(0, x)=\cos \left(\frac{x^{3}}{3}\right) & \text { for } & t=0, x \in \mathbb{R} .
\end{array}\right.
$$

Find a solution to

$$
\left\{\begin{array}{rll}
x^{2} u_{t}+t u_{x}=0, & \text { for } & (t, x) \in(0, \infty) \times \mathbb{R}, \\
u(0, x)=4 x^{6}-2 \cos \left(\frac{x^{3}}{3}\right) & \text { for } & t=0, x \in \mathbb{R},
\end{array}\right.
$$

## Superposition

Show that $\tilde{u}(t, x)=x^{6}-3 t^{2} x^{3}+\frac{9}{4} t^{4}$ is a solution of the IVP

$$
\left\{\begin{array}{rll}
x^{2} u_{t}+t u_{x}=0 & \text { for } & (t, x) \in(0, \infty) \times \mathbb{R}, \\
u(0, x)=x^{6} & \text { for } & t=0, x \in \mathbb{R},
\end{array}\right.
$$

Straightforward or $\tilde{u}(t, x)=\left(x^{3}-\frac{3}{2} t^{2}\right)^{2}=f\left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)$ with $f(y)=9 y^{2} \rightarrow$ us Slide $(x)$ Show that $\hat{u}(t, x)=\cos \left(\frac{x^{3}}{3}-\frac{t^{2}}{2}\right)$ is a solution of the IVP

$$
\left\{\begin{array}{rll}
x^{2} u_{t}+t u_{x}=0 & \text { for } & (t, x) \in(0, \infty) \times \mathbb{R}, \\
u(0, x)=\cos \left(\frac{x^{3}}{3}\right) & \text { for } & t=0, x \in \mathbb{R} .
\end{array}\right.
$$

Straightforward or Slide $\circledast$ with $f=\cos$
Find a solution to
$\left\{\begin{array}{rll}x^{2} u_{t}+t u_{x}=0, & \text { for } & (t, x) \in(0, \infty) \times \mathbb{R}, \\ u(0, x)=4 x^{6}-2 \cos \left(\frac{x^{3}}{3}\right) & \text { for } & t=0, x \in \mathbb{R},\end{array}\right.$
Linear combinations of solutions to the PDE are solutions (shown before), hence, $4 \tilde{u}-2 \hat{u}$ solves this IVP. $\rightarrow 4 \tilde{a}(0, x)-2 \hat{u}(a x)=4 x^{6}-2 \cos \left(\frac{x^{3}}{3}\right)$

## Linear substitution

Solve the initial value problem

$$
\begin{aligned}
u_{x x}-3 u_{x t}-4 u_{t t} & =0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0) & =0 \quad \text { for } x \in \mathbb{R} \\
u_{t}(x, 0) & =2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R}
\end{aligned}
$$

Hint: Use the substitution $\alpha=x+\frac{t}{4}, \mu=x-t$ to transform the PDE

## Linear substitution

Solve the initial value problem

$$
\begin{aligned}
u_{x x}-3 u_{x t}-4 u_{t t} & =0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0) & =0 \quad \text { for } x \in \mathbb{R} \\
u_{t}(x, 0) & =2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R}
\end{aligned}
$$



Hint: Use the substitution $\alpha=x+\frac{t}{4}, \mu=x-t$ to transform the PDE
Define $v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-\mu}{5}\end{array}\right.$.

$$
\begin{aligned}
& \text { Then use the chain rule: } \\
& \begin{aligned}
& v_{\alpha}=u_{x} \cdot \frac{d x}{d \alpha}-\frac{d}{d \alpha}+\frac{4 d+\mu}{d t}=\frac{4}{5} \\
& v_{\alpha \mu}=\left(u_{x x} \cdot \frac{d x}{d \alpha} \cdot \frac{d x}{d \mu}+u_{x t} \cdot \frac{d x}{d \alpha} \cdot\left(\frac{d t}{d \mu}\right)+\left(u_{t x} \cdot \frac{d t}{d \alpha} \cdot \frac{d x}{d \mu}+u_{t t} \cdot \frac{d t}{d \alpha} \cdot \frac{d t}{d \mu}\right)\right. \\
&= \\
& \quad \frac{d}{d \mu} \cdot \frac{4 \alpha+\mu}{5}=\frac{1}{5} \quad \frac{d}{d \mu} \frac{4 d-4 \mu}{5}=-\frac{4}{5}
\end{aligned}
\end{aligned}
$$

## Linear substitution

Solve the initial value problem

$$
\begin{aligned}
u_{x x}-3 u_{x t}-4 u_{t t} & =0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0) & =0 \quad \text { for } x \in \mathbb{R} \\
u_{t}(x, 0) & =2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R}
\end{aligned}
$$

Hint: Use the substitution $\alpha=x+\frac{t}{4}, \mu=x-t$ to transform the PDE
Define $v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Then use the chain rule:

$$
\begin{aligned}
v_{\alpha} & =\frac{4}{5} u_{x}+\frac{4}{5} u_{t} \\
v_{\alpha \mu} & =\frac{4}{25}\left(u_{x x}-4 u_{x t}+u_{x t}-4 u_{t t}\right)
\end{aligned}
$$

## Linear substitution

$$
\begin{gathered}
u_{x x}-3 u_{x t}-4 u_{t t}=0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0)=0, \quad u_{t}(x, 0)=2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R} . \\
v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu)) \text { with }\left\{\begin{array}{r}
x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\
t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}
\end{array}\right. \\
v_{\alpha \mu}=\frac{4}{25}\left(u_{x x}-4 u_{x t}+u_{x t}-4 u_{t t}\right)
\end{gathered}
$$

## Linear substitution

$$
\begin{gathered}
u_{x x}-3 u_{x t}-4 u_{t t}=0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0)=0, \quad u_{t}(x, 0)=2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R} . \\
v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu)) \text { with }\left\{\begin{array}{r}
x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\
t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}
\end{array}\right. \\
v_{\alpha \mu}=\frac{4}{25}\left(u_{x x}-4 u_{x t}+u_{x t}-4 u_{t t}\right)
\end{gathered}
$$

Thus, a $\mathrm{C}^{2}$ function $u(x, t)$ is a solution of the considered PDE if and only if $v$ solves

$$
v_{\alpha \mu}=0
$$

## Linear substitution

$$
\begin{gathered}
u_{x x}-3 u_{x t}-4 u_{t t}=0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0)=0, \quad u_{t}(x, 0)=2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R} . \\
v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu)) \text { with }\left\{\begin{array}{r}
x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\
t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5} .
\end{array}\right. \\
v_{\alpha \mu}=\frac{4}{25}\left(u_{x x}-4 u_{x t}+u_{x t}-4 u_{t t}\right)
\end{gathered}
$$

Thus, a $\mathrm{C}^{2}$ function $u(x, t)$ is a solution of the considered PDE if and only if $v$ solves

$$
v_{\alpha \mu}=0
$$

In particular, $v_{\alpha}$ is independent of $\mu$, i.e.,

$$
v(\alpha, \mu)_{\alpha}=\phi(\alpha) \stackrel{\int d \alpha}{\Longrightarrow} v(\alpha, \mu)=
$$

## Linear substitution

$$
\begin{gathered}
u_{x x}-3 u_{x t}-4 u_{t t}=0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0)=0, \quad u_{t}(x, 0)=2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R} . \\
v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu)) \text { with }\left\{\begin{array}{l}
x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\
t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}
\end{array}\right. \\
v_{\alpha \mu}=\frac{4}{25}\left(u_{x x}-4 u_{x t}+u_{x t}-4 u_{t t}\right)
\end{gathered}
$$

Thus, a $\mathrm{C}^{2}$ function $u(x, t)$ is a solution of the considered PDE if and only if $v$ solves

$$
v_{\alpha \mu}=0 .
$$

In particular, $v_{\alpha}$ is independent of $\mu$, i.e.,

$$
v(\alpha, \mu)_{\alpha}=\phi(\alpha) \stackrel{\int d \alpha}{\Longrightarrow} v(\alpha, \mu)=\Phi(\alpha)+\Psi(\mu)
$$

## Linear substitution

$$
\begin{gathered}
u_{x x}-3 u_{x t}-4 u_{t t}=0 \quad \text { for } x \in \mathbb{R}, t \in \mathbb{R}^{+} \\
u(x, 0)=0, \quad u_{t}(x, 0)=2 x e^{-x^{2}} \quad \text { for } x \in \mathbb{R} . \\
v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu)) \text { with }\left\{\begin{array}{l}
x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\
t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}
\end{array}\right. \\
v_{\alpha \mu}=\frac{4}{25}\left(u_{x x}-4 u_{x t}+u_{x t}-4 u_{t t}\right)
\end{gathered}
$$

Thus, a $\mathrm{C}^{2}$ function $u(x, t)$ is a solution of the considered PDE if and only if $v$ solves

$$
v_{\alpha \mu}=0
$$

In particular, $v_{\alpha}$ is independent of $\mu$, i.e.,

$$
v(\alpha, \mu)_{\alpha}=\phi(\alpha) \stackrel{\int d \alpha}{\Longrightarrow} v(\alpha, \mu)=\Phi(\alpha)+\Psi(\mu)
$$

Hence, every function of the form

$$
u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)
$$

is a solution to the original PDE (if $\Phi, \Psi$ 'smooth enough').

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:
$u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t)$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t) \\
& u(x, 0)=
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t) \\
& u(x, 0)=\Phi(x)+\Psi(x)
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t) \\
& u(x, 0)=\Phi(x)+\Psi(x) \quad u_{t}(x, t)=
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\psi^{\prime}(x-t) \\
& u(x, 0)=\Phi(x)+\Psi(x) \quad u_{t}\left(x, t_{0}\right)=\frac{1}{4} \Phi^{\prime}(x)-\psi^{\prime}(x)
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t) \\
& u(x, 0)=\Phi(x)+\Psi(x) \quad u_{t}(x, 0)=\frac{1}{4} \Phi^{\prime}(x) \\
& u(x, 0) \stackrel{!}{=} 0 \Longrightarrow
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5} .\end{array}\right.$
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t) \\
& u(x, 0)=\Phi(x)+\Psi(x) \quad u_{t}(x, 0)=\frac{1}{4} \Phi^{\prime}(x) \\
& u(x, 0) \stackrel{!}{=} 0 \Longrightarrow \Phi(x)=-\Psi(x) \\
& u_{t}(x, 0) \stackrel{!}{=} 2 x e^{-x^{2}} \Longrightarrow
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5}\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t) \\
& u(x, 0)=\Phi(x)+\Psi(x) \quad u_{t}(x, 0)=\frac{1}{4} \Phi^{\prime}(x) \\
& u(x, 0) \stackrel{!}{=} 0 \Longrightarrow \Phi(x)=-\Psi(x) \\
& u_{t}(x, 0) \stackrel{!}{=} 2 x e^{-x^{2}} \Longrightarrow
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5} .\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
\begin{aligned}
& u(x, t)=v(\alpha, \mu)=\Phi(x+t / 4)+\Psi(x-t) \Rightarrow u_{t}(x, t)=\frac{1}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t) \\
& u(x, 0)=\Phi(x)+\Psi(x) \quad u_{t}(x, 0)=\frac{1}{4} \Phi^{\prime}(x) \\
& u(x, 0) \stackrel{!}{=} 0 \quad \Longrightarrow \Phi(x)=-\Psi(x) \\
& u_{t}(x, 0) \stackrel{!}{=} 2 x e^{-x^{2}} \xlongequal{\Longrightarrow} \xlongequal{\Longrightarrow} \frac{1}{4} \Phi(x)-\Psi(x) \stackrel{!}{=} \int_{x_{0}}^{x} 2 z e^{-z^{2}} d z=-e^{-x^{2}}+c
\end{aligned}
$$

## Linear substitution

$v(\alpha, \mu):=u(x(\alpha, \mu), t(\alpha, \mu))$ with $\left\{\begin{array}{l}x(\alpha, \mu)=\frac{4 \alpha+\mu}{5} \\ t(\alpha, \mu)=\frac{4 \alpha-4 \mu}{5} .\end{array}\right.$.
Every function of the form $u(x, t)=\Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)$ is a solution to the original PDE. ( $\Phi, \Psi$ 'smooth enough')

Now consider the initial values:

$$
u(x, t)=v(\alpha, \mu) \stackrel{\circledast}{=} \Phi(\overbrace{x+t / 4}^{=\alpha})+\Psi(\overbrace{x-t}^{\sim}) \Rightarrow u_{t}(x, t) \stackrel{\sim}{4} \Phi^{\prime}(x+t / 4)-\Psi^{\prime}(x-t)
$$

$$
u(x, 0)=\Phi(x)+\Psi(x) \quad u_{t}(x, 0)=\frac{1}{4} \Phi^{\prime}(x)
$$

$$
u(x, 0) \stackrel{!}{=} 0 \quad \Longrightarrow \Phi(x) \stackrel{\nVdash}{=}-\Psi(x)
$$

$$
u_{t}(x, 0) \stackrel{!}{=} 2 x e^{-x^{2}} \Longrightarrow \frac{1}{4} \Phi(x)-\Psi(x) \stackrel{!}{=} \int_{x_{0}}^{x} 2 z e^{-z^{2}} d z=-e^{-x^{2}}+c
$$

Hence, the solution of the initial value problem is given by

$$
u(x, t) \stackrel{\star}{=} \Phi\left(x+\frac{t}{4}\right)+\Psi(x-t)=-\frac{4}{5} e^{-\left(x+\frac{t}{4}\right)^{2}}+\frac{4}{5} e^{-(x-t)^{2}}
$$

Remark: The substitution of $u_{t t}+(a+b) u_{t x}+a b u_{x x}$, the analogous substitution is given by $\alpha=x-b t$ $\mu=x-a t$.

